【实用】数学说课稿四篇
作为一位优秀的人民教师,编写说课稿是必不可少的,认真拟定说课稿,那么问题来了,说课稿应该怎么写?以下是小编为大家收集的数学说课稿4篇,欢迎阅读与收藏。
尊敬的各位评委、各位老师大家好!我说课的题目是《函数的单调性》,我将从四个方面来阐述我对这节课的设计。
一、教材分析
函数的单调性是函数的重要性质。从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用。函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用。
根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标:
知识与技能使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;
过程与方法引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。
情感态度与价值观在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用。虽然高一学生已经有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的。因此,本节课的学习难点是函数单调性的概念形成。
二、教法学法
为了实现本节课的教学目标,在教法上我采取了:
1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。
2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。
3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。
在学法上我重视了:
1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。
2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。
三、教学过程
函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节。
(一)创设情境,提出问题
(问题情境)(播放中央电视台天气预报的音乐)。如图为某地区20xx年元旦这一天24小时内的气温变化图,观察这张气温变化图:
目的要求
1、能从数、形两方面深刻理解线与线之间的位置关系,并会用方程法讨论直线与两类(封闭与非封闭)曲线的位置关系。
2、弦长公式的理解与灵活运用。
3、通过曲线焦点的弦的弦长问题的处理,能运用圆锥曲线的第二定义以求简化运算,使解题过程得到优化。
本节重点:
1、直线与曲线的位置关系。
2、数形结合思想的渗透。
本节难点:
1、非封闭曲线,尤其是双曲线与直线位置关系的讨论。
2、充分运用新旧知识的迁移,从数与形两方面深刻理解相关结论,构建完整的知识体系。
3、在掌握共性的(方程法)基础上,注意个性(距离法),防止负迁移,做到特殊问题能特殊处理。
教学过程
一、要点归纳:
如何解决直线与圆锥曲线的位置关系问题,方程法是通用的方法,
相应方程组的解的个数就是二者交点的个数,若有两个交点,则交点连线的长度就是相应的弦长。基本内容包括:
(一)、位置关系的分类讨论:
1、直线与封闭曲线(圆与椭圆):
以直线与椭圆为例:
因为,所以可以直接讨论判别式:
直线与曲线相离(0个交点)。
直线与曲线相切(1个交点)。
直线与曲线相交(2个交点)。
注意:对于直线与圆的位置关系的讨论,除此之外,我们常
通过圆心和直线的距离与半径的大小关系来判定。
2、直线与非封闭曲线(双曲线与抛物线):
以直线与双曲线为例:
(1)、即时,方程有唯一解,直线与渐近线平行,位置关系是相交,且只有一个交点。
(2)、时,讨论判别式:
直线与曲线相离(0个交点)。
直线与曲线相切(1个交点)。
直线与曲线相交(2个交点)。
归纳指出:对于非封闭曲线,直线与其仅有一个交点,只是二者相切的一个必要条件,而非充分条件!
(二)、直线与曲线相交——弦长问题:
设直线与曲线相交于,两交点坐标的唯一来源
是方程组,下面的弦长公式很显然:
(消元后是关于x的方程)
或(消元后是关于y的方程)
结合图象,弄清楚公式的导出方法,是为至要!
特别指出:抛物线的焦点弦性质丰富多彩,以为例,若直线过焦点,关键是注意两点:
(1)、巧设直线方程:
(2)、根据定义求弦长:
说教材
1、说课的内容:义务教育课程标准实验教科书人教版数学第一册第18页。
2、自然数有两方面的含义,用来表示事物有多少时,称为基数,用来表示事物的次序时,称为序数。本节教学自然数的另一个含义:序数含义。在学生了解了1-5的基数含义的基础上,教材通过一幅常见的排队购票图,引入序数含义的教学。
3、教学目标:
(1)让学生学会区分几个和第几个,初步感知自然数的基数含义和序数含义,并能用“第几”来描述物体的位置。
(2)在教学过程中,适时向学生积极参加体育锻炼、遵守公共秩序,文明守纪的教育。
(3)让学生在愉快的游戏中理解、运用知识,培养学生的合作意识、参与意识。
4、教学重点和难点:
本节课的教学内容,是让学生学会区分5以内的几个和第几个,这是教学的重点。学生对第几来描述物体的位置是教学的难点,可通过学生参与活动的过程中探索、思索、交流,从而获取知识。同时培养学生的合作意识、参与意识。
说教法学法
为全面准确地落实本节课的教学目标,和本着学生全面发展的特点,教学时将根据儿童的年龄特点,在教学时应与学生的生活实际密切联系,调动学生的积极性,让学生在给运动员排名次的过程中,自然的掌握第几和几个的概念。让学生在参与活动的过程中探索、思索、交流,来获取新的知识。同时创设游戏,让学生在玩的同时自然的获取知识,而且培养学生的合作意识、参与意识。
说教学程序设计
(一)创设情境,引入新知
师谈话:小朋友们,你们喜欢开运动会吗?今天,老师和小朋友们在教室里举行一次小小的运动会吧!安排学生看运动员跑步的.快慢,看看谁跑得最快?谁跑得最慢?让学生在给运动员排名次的过程中,自然的掌握“第几”的概念。
(二)巧设练习,巩固新知
运动员按照跑步的名次站成一排,老师找几个平时接受知识较慢的或课堂上不爱参加活动的学生按照老师的要求来发奖牌,从中了解他们对知识的掌握情况,激发他们的学习兴趣。
1、发奖。师说:跑步比赛结束了,现在我们要举行发奖仪式,请学生代表给运动员发奖牌。师提出不同的要求:请你给第一名的运动员发奖牌;请你给第二名的运动员发奖牌等等。
2、送水。运动员很辛苦,现在他们正在休息,你能把这杯水送给第3个运动员吗?(这时运动员已经打乱跑步名次,与同学们面对面坐着。学生在给运动员送水的时候发生了分歧,一个学生给从左数的第三个运动员送水,另一个学生提出了不同的意见,他把水送给另一个运动员。在学生分辨不清的时候,让学生说说自己送水的理由,在两个学生的争论中,同学们理解了“从左数和从右数”的含义,同时也意识到数学语言的严密性。同时巧设练习,把知识的难点放给学生,让学生在参与活动的过程中探索、思索、交流,从而获取知识。
(三)分组合作,运用新知
让学生在愉快的游戏中理解、运用本节课的知识,而且培养学生的合作意识、参与意识。师说:运动会还在进行着,天真热,老师准备了一些太阳帽,请各小组长把帽子发给同学们吧。要求:让小组成员按一定的顺序排成一队,组长仿照老师刚才组织同学给运动员送水的游戏,组织本组的同学玩分帽的游戏,要求每一个同学都有参与活动的机会。组长提出不同的要求,让同学们戴帽子。如:给从左面数第4名同学戴帽子,给从右面数第2名同学戴帽子,给从左数 等。
(四)再设练习,扩展知识
这一环节的设计,使第几和几个的概念更深的掌握,同时培养学生的创造意识,发展学生的思维有很大的帮助。师说:运动会结束了,同学们表演了团体操,老师有两个问题想让同学们帮着解答:
(1)小林的前面有2人,后面有3人,小林这排一共有几人?
(2)小红从前面数排在第2,从后面数排在第3,小红这排一共有几人?让个小组讨论,提示学生可以演示,找出规律,全班交流。
教材分析:
《整数乘法运算定律推广到小数》是义务教育标准实验教材小学数学五年级上册第一单元内容。这部分内容是在学生掌握了整数的四则运算和简便算法,以及小数加减法的基础上进行教学的。
教学目标:
1、知识与技能目标:
通过猜测、验证、应用等环节引导学生探索,并理解整数乘法运算定律对于小数同样适用。
2、过程与方法目标:
能够正确、合理、灵活的运用乘法运算定律进行有关小数乘法的简便运算。
3、情感态度与价值观目标:
让学生相互交流、合作、体验成功的喜悦
教学重点:
探索、发现、理解整数乘法运算定律,在小数乘法中同样适用。
教学难点:
运用运算定律进行小数乘法的简便计算。
学情分析:
五年级的孩子们大部分已养成良好的学习习惯,能在课堂上大胆地表达自己的见解。因此在本堂课的教学中,我充分调动学生的积极性,提高学生课堂活动的参与性,让他们通过亲自探索和体验来达到掌握所学知识的目的。同时,感受数学中的奥妙,增加学习数学的兴趣。
教法学法:
本节课我主要采用自主探究,合作交流,汇报验证等教学方法。通过创设生动的教学情景,激发学生的求知欲。使学生在观察中发现,在探究中交流,在合作中归纳解决问题。具体地说分为以下几种方法:
1、情景创设法。
2、活动探究法 。
3、集体讨论法 。
教学流程:
第一环节:创设情境,导入新课。
上课伊始,我会向孩子们抛出一个问题:同学们,我们已经学习了整数乘法的一些运算定律,谁能来说一说整数乘法的运算定律有哪些?
学生们会回答:乘法交换律、乘法结合律和乘法分配律。
接着我会让孩子们用数字、字母或者符号等自己喜欢的方式来表示出这三个定律。学生展示后,我进行小结:我们知道乘法运算定律在整数乘法中,可以使一些计算更简便了,那么在小数乘法中,这些运算定律是否也能运用呢?今天这节课我们就来研究这个问题。同时板书课题。
在这一环节中让孩子们用自己喜欢的方式表示三个定律,一方面激发他们学习的兴趣,另一方面复习巩固所学的知识,为学习新课作准备。以旧引新,激发孩子的探究欲望,让他们有目标的去思考。
第二环节:自主探索,解决问题。
本环节我设计了以下几个教学活动。
(一)小组合作,猜测验证。
1、用幻灯片出示以下题目。
2○1.2
0.4○0.8
0.5○2.4
让孩子们猜一猜,每一组算式它们有怎样的关系?(当然由于是猜测,学生出现的答案很可能会不一样。)
2、学生自己探究,验证。
让学生以小组为单位通过计算得出结论,原来每组算式的结果都是相等的。
接着我引导学生们仔细观察每一组算式,它们有什么特点?
学生们通过观察会得出如下结论:第一组算式运用了乘法交换律,第二组算式运用了乘法结合律,第三组算式运用了乘法分配律。
3、举例验证。
我向孩子们提问:通过上面的一组例子,能否就说明乘法运算定律在小数乘法中同样适用?
孩子们可能有两种意见:能或是不能。
针对不同意见,我会引导他们:对,单纯的一组例子并没有说服力,我们需要多举几个例子进行验证。下面咱们就以小组为单位仿照第一组的例子,也写出三种这样的算式,并验证是否相等。
(给孩子们充分的时间动手写,验证后让他们进行汇报,尽量多让几组学生汇报,这样例子多了,结论更有说服力。)
学生汇报的同时,我会有目的的板书几组算式,让学生观察发现,乘法运算定律,在小数乘法中同样适用。
在大家交流结束后,我这样引导他们:刚刚小组同学相互交流后,你能用一句话来概括你们的发现吗?(引导学生得出结论:整数乘法的运算定律在小数乘法中同样适用。)
在这一环节中我首先让学生进行猜测,在头脑中初步感知每一组算式之间的关系,然后进行验证,进一步理解每一组算式之间的关系,再次启发学生自己举例验证,让他们通过自己动手动脑,以及倾听其他同学的发言,从而得出结论。在这一环节中,教师的作用只是引导点拨,决不把规律强加给学生,而是让学生自己去猜测、发现、验证。
(二)灵活应用,解决问题。
出示例题8
师:同学们,仔细观察下面两题,看看它们能不能用简便方法计算。
4.784 0.65201
(1)让学生独立思考,然后尝试写在练习本上。
(2)指名让学生板演。
然后我会让孩子们思考:
第①题中为什么先让0.25和4相乘?这里运用了什么运算定律呢?
孩子们会自然而然的答出:运用了乘法交换律
接着问他们:
你们认为第②小题中解题的关键是什么?
学生会根据以往的知识答出:把201分成200+1,然后用乘法分配律完成。(因为乘法分配率在上学期的学习中就是一个难点,所以这里我也会强调一下,让孩子们体会到先把特殊的数进行分解,然后才能进行简算。)
然后继续提问:在小数乘法中,要使计算简便,我们应该注意什么?(启发学生思考,认真审题,要观察数的特点等。)
在这一环节里,让孩子们运用所学的知识解决问题,这是数学学习的目的。学生通过自己动脑想,尝试用乘法的运算定律使计算简便,激发了他们运用知识解决问题的欲望,同时使学生体会到运用乘法运算定律的简便性,并体验到成功的快乐。
第三环节:精心选题,多层训练。
本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、层次分明的练习题组(基本题、变式题、拓展题、开放题)。
练习题组设计如下
通过各种形式的练习,进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。
第四环节:质疑总结,反思评价。
用幻灯片出示以下两个问题
让学生以小组为单位,每位学生充分发言,交流学习所得。在评价方面:先让学生自评,接着让他们互评,最后我会表扬全班学生,以增强学生的自信心和荣誉感,使他们更加热爱数学。
在本环节通过交流学习所得,增强孩子们学习数学知识的信心,培养了他们敢于质疑、勇于创新的精神。
板书设计:
本课的板书设计如下这样的板书设计既条理清楚、简单明了、一目了然;同时又突出了本课的教学重点,对学生的学习起到帮助作用。
文档为doc格式